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Double-diffusive instabilities in a vertical slot
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A fluid stably stratified by a salinity gradient and enclosed between two vertical
boundaries can become unstable when it is subjected to a temperature difference
between the walls. The linear stability of such a fluid in a vertical slot is investigated.
Errors in earlier results are found, confirming recent results of Young & Rosner
(1998). Four different asymptotic regimes on the stability boundary are identified.
One of these, the limit of a strong salinity gradient, has previously been analysed. The
analyses of the separate asymptotic limits of weak salinity gradient, large temperature
difference and small wavenumber are also given. These four cases make up much of
the total boundary between stability and instability for double-diffusive instabilities in
a vertical slot, and so most of this boundary can be mapped out for general Prandtl
numbers and salt/heat diffusivity ratios using these results.

1. Introduction
The term ‘double-diffusive convection’ applies to convection in a fluid where there

are two diffusing components which have an effect on the buoyancy. The archetypal
case is heat and salt. We will follow the usual convention of referring to the faster
diffusing component in the fluid as ‘heat’ and the slower diffusing component as ‘salt’.
Convection that is dominated by the presence of two components is very common
in geophysical systems and has been the subject of much study since Stern (1960)
realized the important implication of an ‘oceanographical curiosity’ (Stommel, Arons
& Blanchard 1956). A broad view of the subject of double-diffusive convection is
given by Brandt & Fernando (1996).

The effect of horizontal temperature and salinity gradients on a stably stratified fluid
was first examined by Stern (1967) in the context of fronts in the oceans. Thorpe, Hutt
& Soulsby (1969) investigated the effect of lateral heating on a salt-stratified body of
fluid in both narrow and wide vertical slots. Their investigation was both experimental
and, under the assumption that the salinity gradient was strong, theoretical. The linear
analysis in this limit was further investigated by Hart (1971) who also conducted a lim-
ited numerical investigation into the stability for a range of salt stratifications in a slot.
Hart later went on to investigate some nonlinear aspects of double-diffusive convection
in a vertical slot (Hart 1973). A more detailed examination of the linear stability of a
salinity gradient in a vertical slot was conducted by Thangam, Zebib & Chen (1981).
They calculated the criteria for the onset of instability for a large range of salinity
gradients. However, for a relatively small range of gradients some of their results were
erroneous. This was pointed out by Young & Rosner (1998), and is confirmed here.
Young & Rosner calculated the stability boundary for several values of the salt/heat
diffusivity ratio, and also conducted a weakly nonlinear analysis of these instabilities.

In this paper we shall again look at the linear stability of a salinity gradient in an
infinite vertical slot. In § 2 we will give the governing equations for the linear stability
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of the fluid in a vertical slot. We shall present the results of numerical calculations
of the stability boundary. These calculations were performed using two different
numerical techniques, a shooting method and a Galerkin approach. We will identify
four different sections of the stability boundary which are amenable to asymptotic
analysis. One of these, the strong salinity gradient limit, was identified and analysed
by Thorpe et al. In § 3 we present the asymptotic analysis of each of these regimes.
Finally, in § 4, we will discuss the results.

2. Governing equations and marginal stability
We consider the linear stability of an infinite vertical slot which contains a body of

fluid with a uniform vertical salinity gradient when there is a constant temperature
difference imposed across the walls. We will assume the walls are impermeable to
salt. We will follow previous authors and only consider two-dimensional instabilities.
These have been shown to be the most unstable modes for at least some of the
parameter ranges under consideration here (Thorpe et al. 1969).

In this section we will follow the formulation of Thangam et al. (1981) in their
investigation of the stability of a salinity gradient in a vertical slot. We will use slightly
different notations which will, we hope, lead to an improvement in clarity in the some
of the asymptotic expansions used in the subsequent section. For further details of
the derivation of these equations the reader is referred to this earlier paper.

The non-dimensional parameters for the heating on a salinity gradient in a slot are
the temperature and salt Rayleigh numbers

RaT =
gα∆TD3

νκT
, RaS =

g(−βSz)D4

νκT
, (2.1)

and the Prandtl number and salt/heat diffusivity ratio

σ =
ν

κT
, τ =

κS

κT
. (2.2)

Here g is the acceleration due to gravity, ν the kinematic viscosity, κT and κS the heat
and salt diffusivities, α the coefficient of thermal expansion and β the coefficient of
density increase with respect to the addition of salt. The walls are a distance D apart,
with an imposed temperature difference of ∆T . The uniform vertical salinity gradient
in the slot is Sz . Since we are using the convention that the faster diffusing component
is referred to as the temperature, the salt/heat diffusivity ratio, τ, is always less than 1.

If the governing equations are made non-dimensional using the scalings D for
length, D2/κT for time, ∆T for temperature and D

∣∣Sz∣∣ for salinity, then the steady
non-dimensional background state is given by

W (x) =
RaT

2M3(sinM + sinhM)
(sinhM1 sinM2 − sinM1 sinhM2) , (2.3a)

T (x) = −x, (2.3b)

Sx(x) = − RaT
4τM4

(
1 +

1

sinM + sinhM
(coshM1 sinM2 − coshM2 sinM1

− sinhM1 cosM2 + sinhM2 cosM1)

)
, (2.3c)
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where

M =

(
RaS
4τ

)1/4

, M1 =

(
Mx+

M

2

)
, M2 =

(
Mx− M

2

)
. (2.4)

Here W (x), T (x) and Sx(x) are the non-dimensional vertical velocity, the temperature
and the horizontal salinity gradient. These satisfy the boundary conditions

W (± 1
2
) = 0, T (± 1

2
) = ∓ 1

2
, Sx(± 1

2
) = 0. (2.5)

The coefficients in the equations for linear perturbations to this non-dimensional
background state are independent of the non-dimensional time, t, and the verti-
cal coordinate, z, and so we can consider perturbations which are proportional to
exp(λt+ iαz), where λ is the growth rate and α the vertical wave number. This leads
to a set of linear equations for the perturbation stream function, temperature and
salinity: (

d2

dx2
− α2

)2

ψ − iα

σ

(
W (x)

(
d2

dx2
− α2

)
ψ − ψW ′′

(x)

)
+RaTT

′ − RaSS
′ − λ

σ

(
d2

dx2
− α2

)
ψ = 0, (2.6a)

(
d2

dx2
− α2

)
T + iαψT

′
(x)− iαW (x)T − λT = 0, (2.6b)

τ

(
d2

dx2
− α2

)
S + iαψS

′
(x)− iαW (x)S + ψ′ − λS = 0, (2.6c)

with boundary conditions

ψ = ψ′ = T = S ′ = 0 on x = ± 1
2
. (2.7)

The above equations give an eigenvalue problem for the growth rate, λ, for any
given set of parameters RaT , RaS , σ and τ. Throughout this paper we will consider
the case of σ = 6.7 and τ = 0.01, the approximate values for common salt in water.

We wish to find the marginal stability curve for this system of equations. This
corresponds to the boundary in the (RaT ,RaS )-plane which separates regions where
solutions with a positive real part to their growth rate, λ, exist from regions where
they do not. On this boundary there will usually be a solution for some value of the
vertical wavenumber, α, with either λ = 0 or, if the onset of instability is oscillatory,
with λ = iω for some non-zero ω. The eigenvalues and solutions of these equations
were calculated numerically. Originally a standard shooting method based around a
fourth-order Runge–Kutta scheme was employed to investigate this stability boundary.
However, when results were found which differed from those of Thangam et al. it was
felt that confirmation should be found using an totally different numerical method. For
this verification of the results we employed the Galerkin method of Thangam et al.,
expanding the stream function, temperature and salinity using complete sets of orthog-
onal functions. For further details of this method see their paper. Taking a truncation
after N terms of each of these series results in a 3N × 3N matrix eigenvalue problem
which was solved numerically using NAG library routines. The choice of the trunca-
tion level, N, depended on which part of the stability boundary was being considered.

The second numerical scheme proved to be more robust as it was able to calculate
solutions in the case of small salinity gradient where the shooting method was
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Figure 1. Marginal stability curve for a salinity gradient in a vertical slot with σ = 6.7 and τ = 0.01.
The onset of instability is steady everywhere except for the dashed curve. The numbers indicate the
sections of the curve where different asymptotic regimes hold.

unable to find solutions. Unfortunately the solutions found were not always very
accurate unless a sufficiently large N was used (see the Appendix). The reason for the
failure of the shooting method in this region will become clear in the discussion of the
asymptotics of this regime in § 3.1. In regimes where both schemes produced results the
agreement was always to at least five significant figures, and usually better than this.

The full stability boundary is shown in figure 1. For values of RaS greater than
10 and less that 0.45 the curve is essentially the same as that of Thangam et al.
These authors found that all modes of instability were oscillatory between these two
limits. However, the results found here are very different. The part of the stability
boundary below RaS = 0.45 representing steady convection continues past this point,
curving upwards. The instabilities do not become oscillatory until RaS = 2.0256.
There is then a small region when RaS lies between 2.0256 and 4.7703 where the
initial instability is oscillatory. This is shown in the figure by the dashed line. Along
this branch of solutions the frequency decreases from around 235 to 115. At the end
of this oscillatory branch, where RaT = 18 767, the preferred mode of instability again
becomes steady. The next part of the boundary is almost vertical and sweeps down
to a minimum near RaS = 10, and then increases steadily as RaS increases.

Thus, most of the oscillatory solutions reported by Thangam et al. for RaS between
0.45 and 10 are not found here. The only part of the boundary where the initial
instability is oscillatory is along the small portion of the boundary indicated by the
dashed line in figure 1. These oscillatory solutions continue into the unstable region
as a local maximum in the growth rate, however no oscillatory solutions were found
for RaT much below 12 000. These corrected results have also been found recently by
Young & Rosner (1998) for slightly different parameters.

The wavenumbers, α, corresponding to the points of marginal stability are shown
in figure 2. Due to the shape of the boundary these are shown in two parts. The
first, figure 2(a), shows α as a function of RaS . Below RaS = 2.0256 the wave number
is approximately that of the primary instability in a vertical slot in the absence of
any salinity gradient, but showing a slight decrease in the wavenumber as the salt
Rayleigh number increases. At RaS = 2.0256 there is a jump in the value associated
with the transition to the oscillatory branch of instabilities, shown as a dashed line.
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Figure 2. The vertical wavenumber for the disturbances at the onset of instability as a function of
(a) RaS and (b) RaT .

This branch shows a steady increase until RaS = 4.7703 where there is a another jump
back to a steady branch of solutions. This branch shows a sharp peak whose details
are lost here due to stability boundary being almost parallel to the RaT -axis. The
wavenumber α varies significantly in this region, and so large changes to α occur over
a limited range of RaS . After this peak the wavenumber drops away sharply. Between
RaS = 5.044 and RaS = 63.4 the vertical wavenumber of the most unstable solutions
above the stability boundary approaches zero as the boundary is approached, and
so this part of the boundary could be considered to have α = 0. Strictly speaking
solutions do not exist with this value, and so states with zero growth rate do not exist
on this part of the boundary.

The details of the peak in figure 2(a) are revealed in figure 2(b). This shows α as
a function of RaT . The upper curve gives the large RaS behaviour seen previously.
The short segments of solid line and dashed line to the right give the small-RaS and
oscillatory branches of solutions respectively. These parts of the curve were clearly
visible in figure 2(a). The last curve corresponds to the almost vertical section of the
stability boundary in figure 1. This shows the rise in α from the α = 0 part of the
curve to a peak, and its subsequent decline in an almost straight line with slope −1
until the transition to the oscillatory branch of solutions is reached at RaT = 18 767.

Four sections of the marginal stability curve in figure 1 have been numbered.
These correspond to the four asymptotic regimes that are investigated in the next
Section. The first is the small-salinity-gradient regime where the presence of the
salinity gradient perturbs the stability result for the lateral heating of a vertical slot.
The second regime, which corresponds to the vertical section of the curve, is where the
onset of instabilities is essentially independent of the temperature difference across
the slot. The third regime corresponds to the curved part at the bottom of the stability
curve where α = 0. The last region corresponds to the case where the salinity gradient
is strong. This last region was first analysed by Thorpe et al. (1969).

3. Asymptotic regimes
In this Section we look at the four numbered sections of the marginal stability curve

in figure 1, each corresponding to a part which is amenable to asymptotic analysis. The
first is the small-RaS regime where the presence of the weak salinity gradient perturbs
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the stability result for the lateral heating of a vertical slot in the absence of any salinity
gradients. The second regime corresponds to the upper portion of the vertical section
of the curve, where the onset of instabilities is essentially independent of the tempera-
ture difference. This branch of solutions ceases to be a global maximum in the growth
rate when RaT exceeds 18 767 where the oscillatory mode of instability takes over.
However it continues to be a local maximum and can be traced well into the region of
instability. The analysis of this branch corresponds to taking the large-RaT limit. The
third regime corresponds to the curved part at the bottom of the stability curve where
the vertical wavelength of the instabilities tends to infinity. To find the location of
this boundary we look at the limit as α tends to zero. This is the region that gives the
minimum temperature difference across the slot that can destabilize a salinity gradient
for our chosen parameters. For other parameters this may not be the case; however it
will provide an upper bound for such a minimum temperature difference. We shall see
that this temperature difference is, in general, several orders of magnitude less than
that required to destabilize an unstratified fluid between vertical walls. The last region
is where the strong salinity gradient dominates the instabilities. This corresponds to
taking the large-RaS limit and was first investigated by Thorpe et al. (1969).

The four regimes are examined in the following subsections. In each case the onset
of instability is to non-oscillatory modes, so we can restrict ourselves to considering
the case λ = 0 in this Section.

In order to avoid a proliferation of different notations some expressions used in
different subsections may be repeated. Definitions of new variables or functions in
each subsection should be considered to apply to that subsection only.

3.1. Small salinity gradient

The first section of the stability curve that we will examine (numbered 1 in figure 1)
corresponds to the case where there is a weak salinity gradient that perturbs what
is essentially the thermally driven problem of a laterally heated vertical slot that has
been examined by many authors since Batchelor (1954). For Prandtl numbers less
than 12.7 (Korpela, Gözüm & Baxi 1973) the initial instability takes the form of
stationary convection cells as is found here (Vest & Arpaci 1969). For larger Prandtl
numbers the initial instabilities take the form of travelling waves. The analysis here
assumes that the former steady mode of instability is the relevant one.

We assume that the salt Rayleigh number, RaS , is small and pose the asymptotic
expansions

ψ(x) = ψ0(x) + RaSψ1(x) + · · · , (3.1a)

T (x) = T0(x) + RaST1(x) + · · · , (3.1b)

S(x) = S0(x) + RaSS1(x) + · · · , (3.1c)

with

RaT = RaT 0 + RaSRaT 1 + Ra2
SRaT 2 + · · · . (3.1d)

The background velocity and salinity profiles can also be expanded in asymptotic
series:

W (x) = RaT (W 0(x) + RaSW 1(x) + · · ·), (3.2a)

S (x) = RaT (S0(x) + RaSS1(x) + · · ·), (3.2b)

where

W 0(x) = x(4x2 − 1)/24, (3.3a)



Double-diffusive instabilities in a vertical slot 219

W 1(x) = −x(4x2 − 1)(16x4 − 24x2 + 29)/(322 560τ), (3.3b)

S0(x) = −(4x2 − 1)2/(384τ), (3.3c)

S1(x) = (48x4 − 88x2 + 163)(4x2 − 1)2/(30 965 760τ2), (3.3d)

The leading-order velocity is that which would be found in the absence of a vertical
salinity gradient.

The leading-order perturbation equations are(
d2

dx2
− α2

)2

ψ0 − iα

σ

(
RaT 0W 0(x)

(
d2

dx2
− α2

)
ψ0 − ψ0RaT 0W

′′
0(x)

)
+RaT 0T

′
0 = 0, (3.4a)(

d2

dx2
− α2

)
T0 − iαψ0 − iαRaT 0W 0(x)T0 = 0, (3.4b)

(
d2

dx2
− α2

)
S0 +

iαψ0RaT 0S
′
0(x)

τ
− iαRaT 0W 0(x)

τ
S0 + ψ′0/τ = 0, (3.4c)

with boundary conditions

ψ0 = ψ′0 = T0 = S ′0 = 0 on x = ± 1
2
. (3.5)

It can be seen that the stream function and temperature equations are independent
of the salinity equation. This pair of equations is just that of the laterally heated
unstratified slot. These can be solved numerically and yield the leading-order condition
for the onset of instability for Prandtl number σ = 6.7:

RaT 0 = 52 715, α = 2.7671. (3.6)

This is close to the result of Vest & Arpaci who found that the Rayleigh number at
the onset of steady instabilities can be approximated by

RaT/σ ≈ 7880. (3.7)

This result holds to within a few percent for a large range of Prandtl numbers.
The salinity equation can now, in principle, be solved. However, examination of the

magnitude of some of the terms in (3.4c) shows that it is not a straightforward matter
to solve this equation numerically. The problem comes from the factor iαRaT 0W 0/τ.
This has a magnitude that varies from 0 at the walls and in the centre to peaks of
around 117 000. This results in the equations being very stiff, and with boundary layer
behaviour in the centre of the slot where W 0 vanishes as well as at the walls. This
stiff behaviour was the cause of the original approach to solving the full system of
equations using a shooting method failing along this branch of solutions.

The approach taken here to find a solution to the salinity equation is to exploit
the large magnitude of the troublesome term. This enables us to find an approximate
solution by a matched asymptotic expansion. The structure of the solution consists of
outer solutions away from the walls and the centre, and inner boundary layer solutions
at the walls and in the centre. Of these boundary layers, the one at the centre of the
slot is the most important as this is the location of the sharp maximum in the salinity
perturbation. The details of this asymptotic analysis are given in the Appendix.

To find the next-order perturbation for the thermal Rayleigh number a solvability
condition is applied to the O(RaS ) equations for the stream function and temperature.
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These equation are(
d2

dx2
− α2

)2

ψ1 − iα

σ

(
RaT 0W 0

(
d2

dx2
− α2

)
ψ1 − ψ1RaT 0W

′′
0

)
+ RaT 0T

′
1

=
iα

σ

(
(RaT 0W 1 + RaT 1W 0)

(
d2

dx2
− α2

)
ψ0

−ψ0(RaT 0W
′′
1 + RaT 1W

′′
0)

)
− RaT 1T

′
0 + S ′0, (3.8a)(

d2

dx2
− α2

)
T1 − iαψ1 − iαRaT 0W 0T1 = iα

(
RaT 0W 1 + RaT 1W 0

)
T0, (3.8b)

with boundary conditions

ψ1 = ψ′1 = T1 = 0 on x = ± 1
2
. (3.9)

We multiply these equations by the complex conjugates of the adjoints of ψ0(x) and
T0(x), ψ̂∗0 and T̂ ∗0 respectively, and integrate their sum over the slot to obtain a
solvability condition for the existence of a steady solution:∫ 1/2

−1/2

((
iα

σ

((
RaT 0W 1 + RaT 1W 0

)( d2

dx2
− α2

)
ψ0 − ψ0(RaT 0W

′′
1 + RaT 1W

′′
0)

)

−RaT 1T
′
0 + S ′0

)
ψ̂∗0 + iα

(
RaT 0W 1 + RaT 1W 0

)
T0T̂

∗
0

)
dx = 0. (3.10)

This can be rearranged to give an expression for RaT 1 which can be evaluated
numerically. This gives

RaT 1 = 13 887. (3.11)

This result is for a fixed value of the vertical wavenumber α corresponding to the
minimum value of RaT 0. the critical value of α will also vary with the leading-order
perturbation being proportional to RaS . This has an effect on the critical value of
RaT at O(Ra2

S ) which is beyond the scope of the analysis presented here. This leading-
order perturbation on the wavenumber can be found by expanding RaT 0 and RaT 1 in
Taylor series around the critical value of the wavenumber for the heated slot problem.
This gives the critical value of α as

α = α0 − RaS

(
∂2RaT 0(α0)/∂α

2

∂RaT 1(α0)/∂α

)
+ · · · . (3.12)

These derivatives were estimated, giving

α ≈ 2.7671− 0.0525RaS . (3.13)

The above estimates were all made using solutions calculated using the shooting
method based on the Runge–Kutta technique. Estimates of the leading-order pertur-
bation to the temperature Rayleigh number based around the full numerical results
obtained using the Galerkin approach are shown in table 1. This shows that a good
estimate of RaT 0 was provided for all levels of the truncation. However the estimate
for RaT 1 is quite poor for N = 24, and still not very good for N = 48. There is good
agreement when the truncation is set to N = 72 and N = 96. This may be anticipated
since the leading-order behaviour is just that of the heated slot with no effect of the
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N RaS = 1.0 RaS = 0.1 RaS = 0.01 RaS = 0.001 RaT 0 RaT 1

24 57 979.172 53 288.817 52 773.197 52 721.124 52 715.338 5 785.872
48 66 665.399 54 052.185 52 848.487 52 728.680 52 715.368 13 311.849
72 67 255.831 54 093.822 52 852.502 52 729.080 52 715.367 13 713.527
96 67 255.932 54 093.828 52 852.503 52 729.080 52 715.366 13 713.722

Table 1. Critical thermal Rayleigh numbers, RaT , for different salt Rayleigh numbers, RaS and
truncation levels, N. Also included are the estimates of RaT 0 and RaT 1 based on the results for
RaS = 0.01 and 0.001.
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Figure 3. A comparison of the asymptotic behaviour (solid line) and the full numerical calculations
(dashed line) for the small-RaS limit: (a) the critical value of RaT and (b) the corresponding vertical
wavenumber, α.

salt. This problem has no boundary layer behaviour and is well resolved by all levels
of truncation used here. To model the first-order perturbation requires a satisfactory
solution of the salinity equation which requires a higher truncation level. The lack
of accuracy for lower truncations is shown in the Appendix. For these larger values
of N the expansion of the salinity has sufficient resolution near the centre of the
slot to adequately resolve the boundary layer with its large peak. However for even
larger values of RaS even when the truncation is set to N = 72 the resolution not
adequate along this branch. Fortunately the expansion scheme chosen by Thangam
et al., and used here, has essentially uniform resolution across the whole slot, and
does not concentrate the resolution near the boundaries as would be the case if,
say, Chebyshev polynomials had been used. However, Chebyshev polynomials will
probably be better in other regimes where the only thin boundary layers that need to
be resolved are located at the walls.

A comparison of the asymptotic results and the full results found using the
Galerkin method is shown in figure 3. Figure 3(a) shows the good agreement between
the asymptotic results and the full results for small RaS . The oscillatory mode of
instability becomes dominant for RaS just over 2; however this branch of solutions
can still be traced as a local maximum in the growth rate for higher values of the
salt Rayleigh number, and these values are shown here. The agreement between the
asymptotics and the full numerical results for the critical wave number is shown in
figure 3(b).
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3.2. Large temperature difference

This branch of solutions (numbered 2 in figure 1) is characterized by an almost
constant O(1) value of the salt Rayleigh number, and a wavenumber that decays
as Ra−1

T as RaT increases. The full numerical solution indicates that this branch of
solutions exists as a local maximum in the growth rate for RaT far beyond the point
where the oscillatory mode of oscillation becomes dominant. We can exploit this by
posing a large-RaT expansion for steady solutions:

ψ(x) = ψ0(x) + Ra−1
T ψ1(x) + · · · , (3.14a)

T (x) = Ra−1
T T0(x) + Ra−2

T T1(x) + · · · , (3.14b)

S(x) = S0(x) + Ra−1
T S1(x) + · · · , (3.14c)

RaS = RaS 0 + Ra−1
T RaS 1 + · · · . (3.14d)

Noting that W (x) and Sx(x) are both proportional to RaT we will rewrite them as

W (x) = RaTW 0(x), Sx(x) = RaTSx0(x)/τ, (3.15)

so that W 0(x) and Sx0(x) are functions of x and M = (RaS/τ)
1/4 only. Rescaling the

vertical wavenumber, α = Ra−1
T α0, gives the following leading-order set of equations:

ψ′′′′0 − iα0

σ

(
W 0(x)ψ′′0 − ψ0W

′′
0(x)

)
+ T ′0 − RaS 0S

′
0 = 0, (3.16a)

T ′′0 − iα0ψ0 − iα0W 0(x)T0 = 0, (3.16b)

τS ′′0 + iα0ψ0Sx0(x)/τ− iα0W 0(x)S0 + ψ′0 = 0, (3.16c)

with boundary conditions

ψ0 = ψ′0 = T0 = S ′0 = 0 on x = ± 1
2
. (3.17)

These equations are not significantly simpler to solve than the full equations, except
that RaT does not appear explicitly. These can be solved numerically in the same
way as the full equations, and a minimum value of RaS 0 found with a corresponding
value of α0. For σ = 6.7 and τ = 0.01 this point was found to occur at

RaS 0 = 4.7701, α0 = 442.66. (3.18)

The comparison of this result with the full numerical results is shown in figure 4. This
shows good agreement for both the salt Rayleigh number and the wavenumber, with
the asymptotic results and the full numerical results being indistinguishable for RaT
much above 3000. This corresponds to the upper portion of the vertical boundary in
figure 1. Note that this branch of solutions can be followed some considerable distance
into the region of global instability. The above scalings show that no singularities
develop in these equations near this point as RaT →∞ as was the case in the previous
asymptotic regime. Thus no particular difficulties are found in solving the full problem
along this branch of solutions.

The above equations involve both σ and τ, and so in general the asymptotic
behaviour for this branch has to be recalculated every time a different fluid and/or
a different salt is used. However we can make a further simplification if we assume
that the salt/heat diffusivity ratio, τ, is small. As τ→ 0 we find that the appropriate
scalings are ψ0 = O(1), S = O(τ−1), RaS = O(τ), T0 = O(τ) and α0 = O(τ). If we define
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Figure 4. A comparison of the asymptotic behaviour (solid line) and the full numerical calculations
(dashed line) for the large-RaT limit: (a) the vertical asymptote at RaS = 4.7701 and (b) the vertical
wavenumber, α, as a function of RaT .

the new variables

ψ0 = ψ∗, S0 = τ−1S∗, RaS 0 = τRa∗S , T0 = τT ∗, α0 = τα∗, (3.19)

then the leading set of equations is

ψ∗′′′′ − Ra∗SS
∗′ = 0, (3.20a)

T ∗′′ − iα∗ψ∗ = 0, (3.20b)

S∗′′ + iα∗ψ∗Sx0(x)− iα∗W 0(x)S∗ + ψ∗′ = 0, (3.20c)

with boundary conditions

ψ∗ = ψ∗′ = T ∗ = S∗′ = 0 on x = ± 1
2
. (3.21)

The parameters σ and τ no longer appear in these leading-order equation. In order
to find the relationship between Ra∗S and α∗ we only need to solve (3.20a) and
(3.20c) simultaneously. The results are shown in figure 5. This shows Ra∗S decreasing
from a maximum of 501.36 at the origin towards an asymptote estimated to be at
Ra∗S = 444.8. We will return to this maximum value in the following Section. Although
we have a minimum for Ra∗S we no longer have a corresponding wavenumber.

Care must be taken in interpreting the above results for the limit τ→ 0, especially
looking at the large-α∗ behaviour in figure 5. In order to derive the original large-
RaT equations (3.16a)–(3.16c) we have used one limiting process which made some
assumptions about the relative magnitudes of the terms in the full governing equations.
In taking the second limiting process of τ → 0 we are making some additional
assumptions which are compatible with the first, in that neglected small terms under
the large-RaT assumption do not become large again under the small-τ assumption.
However this is not the case if one then tries to take the further limit α∗ → ∞. This
is incompatible with the earlier assumptions that α → 0 as RaT → ∞ and α∗ → 0 as
τ → 0. The original assumptions will always provide a constraint on the maximum
allowable size of α∗. Thus the limit Ra∗S → 444.8 may only be approached for extreme
values of RaT and τ. However, what this limit does provide is a lower bound for the
possible minimum values of Ra∗S in this asymptotic regime. It will be seen in the next
subsection that this is a useful lower bound in that it is not too different in magnitude
from an upper bound for the value of RaS on the stability boundary in this region.
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Figure 5. A graph of Ra∗S as a function of α, with the large-α∗ asymptote with Ra∗S = 444.8 shown
as a dashed line.

The most noticeable aspect of this large-RaT regime is the vertical nature of the
stability boundary in the (RaT ,RaS )-plane. This means that, for a given salinity
gradient, increasing or decreasing the temperature difference across the slot has no
effect on the stability of the fluid. This may, at first, seem bit surprising. Both W (x)
and Sx(x) are proportional to RaT and hence the temperature difference. Thus the
shear and the horizontal salinity gradient vary greatly along this branch of solutions.
Both the shear of this background flow and the horizontal salinity gradients are
potential sources of the instability mechanism, but since doubling both leads to little
change in the stability one may conclude that one is a destabilizing effect and the
other stabilizing, with the increase in one neutralizing the effect of the increase in
the other. This can be confirmed by artificially multiplying either W 0(x) or Sx0(x) by
some arbitrary factor in (3.16a)–(3.16c) and investigating the effect on the stability
boundary. It is found that increasing the background velocity stabilizes the flow,
while increasing the salinity gradient destabilizes the flow. If both are increased by
the same factor there is little change in the stability. Thus we conclude that the
driving force behind these instabilities is the horizontal salinity gradient, and the
vertical shear is a stabilizing effect. This tendency for shear to suppress convection
has been noted before in the context of double-diffusive convection by Linden (1974)
in his investigation of the effect of shear on salt fingers.

For a salt/heat diffusivity ratio of 0.01 this asymptotic regime corresponds to the
upper portion of the vertical branch labelled 2 in figure 1. From the above analysis we
see that for smaller diffusivity ratios this region of validity will expand downwards.
We shall see in the next Section that the lowest portion of the vertical boundary falls
under a different asymptotic regime.

3.3. Small wavenumber

In this region (numbered 3 in figure 1) the marginal stability is governed by the
behaviour of the governing equations in the limit α → 0. As mentioned in the
previous section, there are no solutions to the perturbation equations when α = 0.
On first inspection it may seem that the appropriate balances for this limit are that
ψ = O(1), T = O(α) and S = O(1). This scaling leads to a set of equations which does
not have a solution. With this scaling S appears in the leading-order equations only
in terms of its first and second derivatives. The no-flux boundary conditions for the
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salinity allows arbitrary constants to be added to S in these simplified equations. If
this constant term is O(α−1) then an extra term appears in the O(1) equations which
enables a solution to be found. Thus we pose an expansion

ψ(x) = ψ0(x) + αψ1(x) + · · · , (3.22a)

T (x) = αT1(x) + · · · , (3.22b)

S(x) = α−1S−1 + S0(x) + αS1(x) + · · · , (3.22c)

with S−1 constant. This expansion yields the leading-order equations

ψ′′′′0 − RaSS
′
0 = 0, (3.23a)

T ′′1 − iψ0 = 0, (3.23b)

τS ′′0 + ψ′0 = iW (x)S−1, (3.23c)

with boundary conditions

ψ0 = ψ′0 = T1 = S ′0 = 0 on x = ± 1
2
. (3.24)

These equations can be solved explicitly to give solutions of the form

ψ0(x) = iS−1RaTf(x;M), T1 = S−1RaTg(x;M), S0 =
iS−1RaT

τ
h(x;M), (3.25)

where each of the real functions f(x;M), g(x;M) and h(x;M) only depends on the
various parameters through M = (RaS/4τ)

1/4. The exact form of these expressions is
lengthy and not very illuminating, and so have not been included here. Copies can be
obtained from the Editorial Office of the Journal of Fluid Mechanics. We can write the
background vertical velocity and horizontal salinity gradients in a similar fashion:

W (x) = RaTW
∗
(x;M), Sx =

RaT
τ
S
∗
x(x;M), (3.26)

where W
∗

and S
∗
x only depend on x and M.

In order to derive a relation between RaT and RaS we need only look at the
second-order salinity equation:

τS ′′1 + ψ′1 = −iSxψ0 + iW (x)S0 + τS−1. (3.27)

If we integrate this over the width of the slot then we obtain∫ 1/2

−1/2

τS ′′1 + ψ′1 dx =

∫ 1/2

−1/2

−iSxψ0 + iW (x)S0 + τS−1 dx. (3.28)

The boundary conditions on S and ψ ensure that the integral on the left of this
equation is identically zero. Rearranging the remaining terms gives

RaT = τ

(∫ 1/2

−1/2

−f(x;M)S
∗
x(x;M) + h(x;M)W

∗
(x;M) dx

)−1/2

. (3.29)

This integral inside the brackets does not involve any of the parameters of the
problem except through M. It too can be evaluated explicitly, yielding another
lengthy expression which again is not included here, but copies are available from the
Editorial Office of the Journal of Fluid Mechanics.

The graph of RaT/τ as a function of M is shown in figure 6(a). The minimum
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Figure 6. Graphs of (a) the value of RaT /τ at marginal stability as a function of M in the limit
α→ 0 and (b) the corresponding curve of RaT as a function of RaS (solid line) with a comparison
with the stability boundary for the full problem (dashed line).

value can be found numerically, giving the minimum point on the marginal stability
curve in the limit of small α

RaT/τ = 3 137.9, M = 3.9779. (3.30)

This value of M corresponds to a salt Rayleigh number of

RaS = 1 001.6τ. (3.31)

The left-hand branch has a vertical asymptote when the term in the brackets in
(3.29) is zero. This occurs when M = 3.3460 or equivalently RaS = 501.36τ. This is
the same value as was found for the maximum of the curve in figure 5, although the
value here does not require the assumption τ→ 0 made in that part of the analysis of
the previous subsection. The stability boundary obtained in the previous subsection
for σ = 6.7 and τ = 0.01 is lower than this value. Other choices of σ and τ will give
different results for the position of the vertical portion of the stability boundary, but it
can never lie to the right of the line found here. Thus this value of RaS gives an upper
bound to the left-hand vertical part of the stability boundary. For small salt/heat
diffusivity ratios the lower bound for RaS on this part of the stability boundary found
in the previous subsection has a value of just under 90% of the value of the upper
bound found here; thus the two results provide reasonably close limits on the position
of the vertical portion of the stability boundary in the small-τ limit.

The stability boundary of the full problem is superimposed on the small-α asymp-
totic results in figure 6(b). The results show agreement around the bottom of the curve.

One feature of this asymptotic regime is that the temperature perturbation plays
absolutely no part in the analysis of this small-α limit. The leading-order dynamics
only involve an interaction between the salinity concentration and the stream function.
The only rôle that temperature plays is in the setting up of the background salinity and
velocity fields. This lack of a rôle for the temperature perturbation is not due to the
very different salt and heat diffusivities as no such assumption has been made in this
small-α analysis. The no-flux boundary conditions imposed on the salt concentration
allow large concentration variations to build up. These concentration perturbations
are essentially uniform across the slot and so can only decay by diffusion in the vertical
direction with an associated long time scale. Since the temperature perturbation is
zero at the walls the time scale for its dissipation is the diffusion time across the slot
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Figure 7. A comparison of the asymptotic behaviour (solid line) and the full numerical calculations
(dashed line) for the large-RaS limit: (a) the critical value of RaT and (b) the corresponding vertical
wavenumber, α.

width, which is a much faster scale. If, however, different boundary conditions were
imposed on the salinity, its concentration would vary across the slot at leading-order
and so it too would diffuse on a time scale based on the slot width. This is a much
shorter time scale and would significantly alter the above analysis.

3.4. Large salinity gradient

The leading-order asymptotic behaviour of this region (numbered 4 in figure 1) was
first investigated by Thorpe et al. (1969). This analysis was extended by Hart (1971)
who considered the higher-order effects of the boundary layers at the walls. The
leading-order condition for marginal stability in this region is

RaT (τ−1 − 1) = 31/2(2π)2/3(RaS/τ)
5/6 (3.32a)

with

α = (π2/2)1/6(RaS/τ)
1/6. (3.32b)

A comparison of these results with the full numerical results is shown in figure 7.
The agreement between the critical thermal Rayleigh number and the asymptotic
estimate is remarkable close down to around RaS = 30. This is entirely fortuitous as
at this low level the small-α asymptotics of the previous subsection is the appropriate
regime. The large-RaS assumption is equivalent to assuming that α is large, which
obviously cannot be the case if α is assumed to be small. As RaS increases there
is a slight divergence of the asymptotic result and the full numerical result. This
difference decreases as RaS increases. A more realistic impression of the convergence
of the full solution to the large-RaS asymptotic regime can be seen by comparing
the wavenumbers for the full solutions with their asymptotic limit. This is shown in
figure 7(b). Here the two lines gradually converge as RaS increases.

In this region the instabilities take the form of thin almost horizontal layers whose
vertical scale is given by the Chen scale (Chen, Briggs & Wirtz 1971), which in
dimensional terms is h = (α∆T )/(−Sz). As the convective instabilities in this regime
are constrained by this Chen scale in the vertical direction and the slot width in
the horizontal direction we can use the mechanistic argument of Kerr (1989). This
argument was applied to the double-diffusive convection that occurs when a salinity
gradient is heated from a single vertical wall, but it will also apply equally here.
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Figure 8. A schematic diagram showing the four different leading-order asymptotic regimes exam-
ined here for σ = 6.7 and τ = 0.01 (heavy lines). The position of the horizontal line at the left is
a function of the Prandtl number, σ. The other three lines move together in the diagonal direction
as the salt/heat diffusivity, τ varies. The positions for τ = 0.1 and τ = 0.001 are shown by the thin
lines. The oscillatory branch of instabilities is not shown.

This argument indicates that the natural non-dimensional parameter that governs the
instabilities in this regime is

Q =
(1− τ)6g(α∆T )6

νκSD2
(−βSz)5

. (3.33)

This parameter is related to a Rayleigh number but involves two lengthscales: the
width of the slot and the vertical Chen scale. Instability in a slot occurs when this
parameter exceeds 432π4, which is equivalent to the above result of Thorpe et al. and
Hart. Kerr went on to find the next-order perturbation of Q for the case of heating
a salinity gradient at an isolated vertical wall. The appropriate expansion parameter
was the square of the ratio of the Chen scale to the horizontal length scale, with an
extra factor of (1 − τ). In the variables used here this is ((1 − τ)RaT/RaS )2. At the
right-hand end of the graphs in figure 6 this quantity has only just gone below 0.2,
and so the agreement is well within reasonable expectations.

In this region the length scale for the diffusion of both the temperature and the
salinity perturbations is the same: the Chen scale. Hence both T and S are involved
in the leading-order behaviour.

4. Discussion
The stability boundaries derived from the four asymptotic regimes described in

this paper are shown schematically by the heavy lines in figure 8 for Prandtl number
σ = 6.7 and salt/heat diffusivity ratio τ = 0.01. The solid lines show the regions where
the asymptotic regimes are appropriate, and the dotted lines show their continuations.
If these regions are joined by reasonably simple curves then just about all of the full
stability boundary in figure 1 is recovered. The only portion that would be missing is
the portion where the primary mode of instability is oscillatory.

The results of the four asymptotic analyses of the previous Section fall into two
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categories. The first, the small-RaS limit, gives a leading-order result which is that
for convection in an unstratified slot, and takes the form RaT = f(σ) ≈ 7 880σ (Vest
& Arpaci 1969) for σ < 12.7. For larger values of the Prandtl number the values
of the critical thermal Rayleigh number, RaT , have a more complicated dependence
on the Prandtl number which cannot be shown clearly on this schematic diagram.
The position of this portion of the stability boundary is determined by the Prandtl
number alone to leading-order. The other three asymptotic results fall into the second
category which has the common property that in the limit τ→ 0 (a limit appropriate
for most salts in most fluids) they can all be express in the form

G
(
RaT/τ,RaS/τ

)
= 0. (4.1)

Thus the positions of these portions of the boundaries are determined by the salt/heat
diffusivity ratio alone. Another important consequence is that the relative positions of
these three asymptotic regimes in the (log RaT , log RaS )-plane is fixed. These portions
of the stability boundary move around as a unit along a diagonal of slope 1 as τ
varies. This is illustrated in figure 8 where the positions of the stability boundaries
given by these three asymptotic regimes are also shown by the light lines for τ = 0.1
and τ = 0.001. Thus the general features of the stability boundary for non-oscillatory
instabilities in a vertical slot are known for most practical situations where τ is small.
The oscillatory branch of solutions only occupies a restricted region of the stability
curve for the case of water and common salt covered here. Young & Rosner (1998)
found the oscillatory part of the stability boundary for some other values of τ; its size
did not seem to vary much with these changes in parameters. This oscillatory regime
does not seem to lend itself to an asymptotic analysis which would allow a description
of its stability boundary for general σ and τ in the way that the other regimes do.

The shape of the marginal stability curve tells us that for any given solute there are
two important conditions for the onset of instabilities. First, is the salinity stratification
strong enough? And secondly, is the temperature difference strong enough? As τ gets
smaller both these conditions become less stringent. For example, if the solute was a
protein instead of common salt then τ could be reduced by a factor of 100, and so the
temperature difference across the walls of a container that could initiate convection
would be 100 less than that required to start convection with the stratification due
to common salt, and well over 100 000 times less than is required to cause cellular
convection in the absence of any solute stratification. With the minimum temperature
difference required to cause convection in a protein solution being less than 10−4 ◦C
in a 1 cm wide slot, it may be very hard not to have convection in the presence of any
stratification.

The importance of the portion of the stability boundary covered by the large-
temperature-difference asymptotics may seem a bit obscure at first. After all, it only
applies to one precise salinity gradient. However, in practice it takes some time for heat
to diffuse across a slot and a linear horizontal temperature gradient to be established.
If the wall temperature is raised quickly then the effective instantaneous Rayleigh
numbers will be governed by the distance that the heat has diffused into the fluid and
not the slot width. Thus RaT will grow like t3/2 and RaS like t2. These instantaneous
Rayleigh numbers may well evolve towards their final state in such a way as to cross
this asymptotic boundary. The exact details of the behaviour on this boundary will
not be applicable for such an evolving system, but it may give a qualitative indication
of the behaviour that may be expected. Similarly this may give an indication of some
of the expected behaviour in experiments where a salinity gradient is heated rapidly
from a single vertical boundary. In Tanny & Tsinober (1988) the evolving salt and
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thermal Rayleigh numbers were traced in their single boundary experiments. The
values of these at the onset of instability are consistent with a stability boundary
whose shape is similar to that of a vertical slot. The theory for the rapid heating
of a single boundary is not well understood (Kerr 1996). However, the observation
that these instabilities are driven by the horizontal salinity gradients and stabilized by
the shear may give an insight into the first appearance of instabilities. The presence
of transient vertical motions near the heated wall was clearly shown by Schladow,
Thomas & Koseff (1992) and the onset of instabilities could be associated with times
when these initial velocities reduce in magnitude.

One aspect of this analysis that could impose limitations on its applicability is the
assumption of a steady state in an infinite channel. In practical situations there will
be ends to the channel, and these will have an effect. Upper and lower boundaries
that are impermeable will result in a background state which is evolving with time
even without an applied temperature difference, although the low diffusivity of salt
does mean that time for disturbances to diffuse from the endwalls is long. However,
the end regions of the slot will always present a difficulty, both analytically and
experimentally. The analysis presented here should be a useful guide to what happens
in the core of a vertical cavity where the end effects are not strongly felt. Another
possible problem with finite cavities is the restriction on the vertical wavenumber of
instabilities. The limit α → 0 implies disturbances of unbounded height. The heating
required to initiate convection in cells of small but finite wavenumber is close to that
found in the small-α limit. Near to marginal stability only a few tall convection cells
may be observed in the slot.

The difference between our results, and those of Young & Rosner, and the original
results of Thangam et al. may well be due to the insufficient resolution used in
their original calculations for some regions of the marginal stability curve. One of
the strengths of the Galerkin approach is that it can produce solutions to difficult
problems. Its drawback is that it can produce plausible incorrect solutions. The dif-
ferent numerical results obtained here have been confirmed by the use of independent
numerical methods and asymptotic analysis.

We would like to acknowledge support of the EPSRC for K. Y. Tang.

Appendix
Here we find an approximation to the solution, S0, of the salinity equation(

d2

dx2
− α2

)
S0 +

iαψ0RaT 0S
′
0(x)

τ
− iαRaT 0W 0(x)

τ
S0 + ψ′0/τ = 0, (A 1)

where ψ0 is a given function of x. We can write this in more general terms as

S ′′0 − (α2 + iµx(x2 − 1
4
))S0 = f(x) (A 2)

where µ is assumed to be large, α is O(1) and f(x) some known function of x. The
boundary conditions are S ′0(± 1

2
) = 0. If x is not small, or near ± 1

2
, then we get the

outer behaviour

So(x) ∼ − f(x)

iµx(x2 − 1
4
)
. (A 3)

When x is small or near ± 1
2

this approximation breaks down. Near x = 0 the

appropriate length scale for the problem is X = µ1/3x. Using this scale gives the
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Figure 9. A comparison of (a) the real and (b) imaginary parts of the asymptotic solution to the
salinity equation in the small-RaS limit (solid line) with the solutions calculated with truncation
levels of N = 24, 48 and 96 for RaS = 0.001. The line for N = 24 is dashed and for N = 48 dotted.
A dashed line for the results with N = 96 is also plotted, but is barely distinguishable from the
solid line of the asymptotics.

leading-order inner problem

d2Si

dX2
+ iXSi = µ−2/3f(0). (A 4)

The solution that is required is one that decays for X → ±∞. This leading-order
problem does not have an exact solution if f(0) is non-zero as is the case here. It has
to be evaluated numerically, but this is straightforward.

Once both the inner solution, Si(X), and the outer solution, So(x), are known a
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composite expansion can be written down:

S0(x) ∼ Si(µ−1/3x) + So(x) +
4f(0)

iµx
. (A 5)

This will be valid to leading-order everywhere except at x = 0 where the value Si(0)
is taken, and in the boundary layers near x = ± 1

2
. These boundary layers can be

treated in a similar way, but since the boundary conditions on ψ0(x) and ψ′0(x) at
the walls requires f(x) to decay to 0, these regions do not play a significant rôle in
the integrations required to find RaT 1 in § 3.1, and so these calculations are omitted.
A comparison between this estimate of the the solution S0(x) compared to that
calculated for the full numerical problem using the Galerkin approach with N = 96,
48 and 24 for RaS = 0.001 is shown in figure 9. The results for the asymptotic estimate
and the numerical solution for N = 96 are almost indistinguishable, while the results
for N = 48 and N = 24 show significant differences. In particular the result for
N = 24 fails to resolve the sharp peak seen near x = 0. This peak is a major part of
the salinity perturbation, and makes a significant contribution to the integral (3.10).
Any truncation that failed to resolve this peak would provide unreliable numerical
results.
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